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Isospectral shapes with Neumann and alternating boundary conditions
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The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent
right isosceles triangles with the Neumann boundary condition is verified numerically to high precision.
Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in
new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive
edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong
numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic
building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are sug-
gested.
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I. INTRODUCTION

As the most accessible realization of the negative ans
to Kac’s @1# question ‘‘Can one hear the shape of a drum
the pair of isospectral shapes discovered by Gordonet al. @2#
~termed, respectively, ‘‘bilby’’ and ‘‘hawk’’ in Fig. 1! have
subsequently been investigated from a variety of mathem
cal, numerical, and experimental viewpoints. Chapman@3#
showed how domain eigenfunctions can be mapped from
constituent triangles of one shape to the second to pr
isospectrality by transplantation, and described a proof
paper-folding. More recently, Okada and Shudo@4# have in-
vestigated isospectrality through a technique of succes
unfolding of fundamental building-block shapes and tra
plantation of eigenfunctions. Wuet al. @5# achieved a proof
by an explicit mode-matching method.

The numerical problem concerning the eigenvalues co
sponds to solving an eigenvalue problem for the tw
dimensional Helmholtz equation subject to the Dirich
boundary condition~DBC!. Wu et al. @5# verified isospectral-
ity numerically by an extrapolated mode-matching meth
apparently to about eight significant figures, tabulated for
first 25 modes. The ‘‘analytical’’ 9th and 21st modes the
corresponding to known simple modes of the underlying
angles, were not computed but were taken at their exact
ues. Subsequently, Driscoll@6#, using a much more accurat
modified domain-decomposition method, verified isosp
trality numerically to 12 significant figures for the first 2
modes, including the two ‘‘analytical’’ modes for which th
computation was more or less exact. This work showed
the computed results in Ref.@5# were actually accurate to
about four to five significant figures.

On the experimental side, Sridhar and Kudrolli@7# per-
formed measurements on thin microwave cavities of the
propriate shapes, utilizing the correspondence with a t
dimensional Helmholtz equation in the electromagne
formulation. Then Even and Pieranski@8# constructed actua
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shaped small ‘‘drums’’—membranes made from liquid cry
tal smectic films—and measured their vibrations.

In this paper, we investigate numerical aspects of the is
pectrality of the two standard bilby and hawk shapes, as w
as other shapes, when Neumann boundary conditions~NBC!
are present, and make suggestions for possible experim
verification.

II. NEUMANN BOUNDARY CONDITIONS

The most commonly encountered boundary condition
the Dirichlet BCc50 on the boundary. This corresponds
the standard ‘‘drum’’ condition for a vibrating membran
with fixed edges, as well as to the boundary condition
quantum billiards@9#. The Neumann BC]c/]n50 also has
important manifestations@9#, especially in acoustics, wher
the pressure satisfies the Helmholtz equation with NBC a
rigid boundary, and for water surface waves. In electrom
netism also, the magnetic field of the transverse electric~TE!
mode in a cavity has NBC. The NBC corresponds to
vibrational modes of a drum with stress-free edges, as
cussed by Hobikiet al. @10#, who numerically investigated
such a situation for fractal boundary shapes. Russet al. @11#
also considered fractal resonators with NBC numerically,
marking that this situation could represent transverse ac
tical phonons of a two-dimensional~2D! irregular crystallite.
In the field of quantum billiards, Gremaud and Jain@12#
considered rational and irrational rhombus billiards w
NBC. Kohler and Blumel@13# considered ray-splitting bil-
liards including NBC. Wiersig@14# has used the fact that, fo

FIG. 1. The two standard isospectral shapes, termed, res
tively, ‘‘bilby’’ and ‘‘hawk.’’
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barrier billiards, the NBC pertains on part of the boundary
a symmetry-reduced polygon for the even states of the
shape. Neumann boundary conditions are therefore im
tant, and the problem of isospectral shapes with these co
tions will now be addressed.

The spectra under consideration in this section are
eigenvalues obtained from the two-dimensional Helmho
equation (¹21E)c50 together with the NBC on the edge
In an earlier proof of the existence of isospectral domains
dimensions greater than or equal to 4, Urakawa@15# already
showed isospectrality for Dirichlet and for Neumann boun
ary conditions. In their announcement of DBC isospec
two-dimensional domains, Gordonet al. @16# also stated tha
the same shapes with NBC were isospectral; Okada
Shudo @4# noted that their procedures, suitably modifie
prove isospectrality for NBC. Chapman@3# proved isospec-
trality for the bilby/hawk and other pairs having the NBC

Gottlieb and McManus@17# produced explicit eigenfunc
tions and corresponding exact eigenvalues for some N

FIG. 2. Nodal lines for the fourth nontrivial Neumann B
modes.

TABLE I. Eigenvalues of the first 30 nonzero modes, to
significant figures, for the two standard isospectral shapes of F
~basic side two units!, with Neumann boundary condition.~Mode
numberM5M 811.)

M 8 E M8 E

1 0.211150088843 16 9.87841180931
2 0.809165742343 17 10.3253541128
3 1.05781354844 18 11.5754753532
4 1.86039671198 19 11.6665580661
5 2.46740110027 20 12.3370055014
6 2.72788980382 21 12.9096372668
7 3.39124050892 22 13.7742157078
8 4.40632478595 23 15.4610825657
9 4.93480220054 24 15.9519127351
10 5.66570714255 25 16.2660218054
11 5.81846754996 26 16.9514271289
12 6.98274727028 27 19.0892095926
13 7.64059043694 28 19.1962817413
14 9.04934361203 29 19.7392088022
15 9.86960440109 30 20.5304462804
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modes of the two isospectral shapes. From the nodal patt
of these analytical expressions and numerical solutions
low modes, they were able to identify the first five analytic
Neumann modes as the 5th, 9th, 15th, 20th, and 29th n
trivial sequential modes. The finite element computatio
mentioned there, while sufficient for identifying pattern
only verified isospectrality to about three significant figure
The exact modes mentioned above, however, serve as be
marks in any investigation of NBC isospectrality for the
shapes.

A numerical verification of isospectrality of the two sta
dard shapes of Fig. 1 for NBC, such as has been done
viously for DBC @5,6#, does not seem to have been carri
out before. For this paper, the earlier work of Driscoll@6# has
been adapted to the NBC case. In@6#, a candidate eigenfunc
tion near a corner with interior anglep/a is expanded in
local polar coordinates as(n51

M cnJna(rAE)sin(nau). Then
one finds an eigenvalueE by matching different expansion
along the interfaces of a domain decomposition; numerica
this becomes a minimization of the result of a matrix eige
value problem. For NBC we replace the sine by a cosine
start the summation atn50.

We have verified isospectrality in the NBC configuratio
for the first 30~nonzero! modes to 12 significant figures. Th
results for both shapes are given in Table I. With fundam
tal length unit 2, the analytical modes described above h
eigenvalues given by Em,n5(p2/4)(m21n2); m<n
50,1,2, . . . . The cases (m,n)5(0,1), ~1,1!, ~0,2!, ~1,2!,
~2,2! corresponding to the five analytical modes describ
above, together with their readily identifiable nodal patte
@17#, are essentially recovered exactly. The nodal pattern
the fourth nontrivial mode~which is nonanalytical! are
shown in Fig. 2.

It may be noted that many of the investigations concern
with quantum chaotic spectral statistics@9# deal with very
large numbers of very high levels. The accuracy on th
typically was 1022 of the mean level spacing for earlie
works, and more recently of the order of 1024. By contrast,
we are concerned here with the first few dozen eigenvalu
computed to very high accuracy, of the order of 10212 of the
mean level spacing or better.

The spectral staircase~number-counting! function for
these systems isN(E)5S i 51¯`Q(E2Ei), whereQ is the
Heaviside unit step function. This is related to the spectra
trace function F(t)5Sn51¯` exp(2Ent) via a Laplace

FIG. 3. Spectral staircase for the bilby/hawk shapes with N
mann BC.
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transform. Based on the work of several authors@18–21#,
with earlier work discussed extensively in Baltes and H
@22#, the ~smoothed! spectral staircase function~correspond-
ing to the trace function appearing in@17#! for polygons is
given by

N~E!;
A

~4p!
E1

~LN2LD!

~4p!
E~1/2!

1~SDD,NN2SDN,ND!
~p22u2!

~24pu!
, ~1!

whereA is the area,LD (LN) is the length of that part of the
perimeter having Dirichlet~Neumann! boundary condition,
and the sums are over corner anglesu subtended by pairs o
sides with boundary conditions as indicated. For basic u
length 2 for the two isospectral shapes of Fig. 1~which have
the same area, perimeter lengths, and corner angles!, this

TABLE II. Eigenvalues of the first 30 modes, to 12 significa
figures, for the two standard isospectral shapes of Fig. 1~basic side
two units!, with ~a! alternating Dirichlet~longest side!/Neumann
boundary conditions;~b! alternating Neumann~longest side!/
Dirichlet boundary conditions.

~a!
M

ADNBC
E

~b!
M

ANDBC
E

1 1.65141342709 1 0.715984505106
2 1.90967315909 2 1.97361411622
3 3.43870897236 3 2.77451509187
4 4.17587478260 4 2.97462791606
5 4.57209973453 5 3.88908349386
6 5.62166889695 6 4.63290823432
7 6.89161511324 7 6.02493079100
8 7.74834106067 8 6.93817184169
9 9.33008358225 9 7.77235813608
10 9.80192274409 10 8.44522884854
11 10.6260535933 11 9.39178897887
12 11.5038125374 12 10.4460416956
13 12.2664713847 13 10.9709402924
14 12.8896196853 14 11.5756538487
15 14.2405332523 15 12.8545214783
16 15.5313799266 16 13.5117617705
17 16.3655578572 17 15.0069728862
18 17.3956907586 18 15.2660433735
19 17.8925543463 19 15.9460361465
20 19.2138859210 20 17.0144500638
21 19.7290650856 21 17.8080832556
22 20.3158331403 22 19.6769099441
23 21.6332697571 23 20.2581964864
24 22.2827868664 24 20.5724674001
25 23.7501148857 25 21.8462979588
26 24.2385971539 26 22.6047777014
27 25.6971017156 27 23.5733311802
28 26.2466652675 28 24.1261381785
29 27.5323151203 29 24.6538070142
30 28.0086952587 30 25.7410633370
01670
f

it

reads, for the NBC case,NN(E)51.1141E11.6302AE
10.4167. In Fig. 3, we plotN(E) for the first 31 modes for
NBC ~including the zero mode!. The agreement with this
graph is good, demonstrating the need for inclusion of
zero mode and the plus sign for the second term in the c
of NBC compared with the minus sign for the DBC case,
was plotted in@6#.

To our knowledge, no experiments involving isospect
shapes with Neumann boundary conditions have been
formed, in contrast to reported experiments for the DBC c
@7,8#. Some such NBC experiments could be envisag
however, based on acoustics and wave propagation in liq
@9, Sec. 2.1#, where NBC’s are involved. For instance
Blumel et al. @23# reported on the nodal patterns of surfa
waves formed by agitating a tank with circular or stadiu
shaped cylindrical walls. Chinneryet al. @24,25# used a
schlieren technique to visualize resonances in sonified w
cavities with stadium and circular cross sections. Heb
et al. @26# made an experimental study of resonances o
fractal acoustic cavity.

It seems likely that these experimental techniques co
be applied to cross-sectional shapes as in Fig. 1 to investi
their isopectrality. Independent checks on the accuracy
such experiments would be available through the seque
mode numbers, eigenvalue ratios, and nodal patterns of
analytical modes pictured in@17#, along with the results in
Table I and plots of Fig. 2 in the present work.

FIG. 4. Nodal lines for the tenth modes in the ADNBC~top! and
ANDBC configurations.
2-3
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III. ALTERNATING BOUNDARY CONDITIONS

There has been some work done on 2D systems wi
mixture of Dirichlet and Neumann BC’s on different parts
the boundary. Baltes and Hilf@22, p. 47# show the appear
ance of a minus sign in the third~constant, corner-angle!
term of the spectral number counting function for a rectan
whose sides successively alternate DBC and NBC@cf. Eq.
~1! above#. In quantum billiards, there has been recent wo
where parts of a rectangular boundary have DBC and p
have NBC, for ray-splitting@13# and barrier@14# billiards.
Thus it is important and timely to consider systems with b
types of boundary conditions in detail.

Having verified, above, the accuracy of our modifi
domain-decomposition method for computationally handl
Dirichlet or Neumann BC’s in the case of the two standa
provably isospectral shapes, we turn to the case of sh
with ‘‘alternating boundary conditions’’~ABC’s! in which
each side is successively DBC or NBC as one moves aro
the perimeter.

A. Standard ‘‘bilby’’ and ‘‘hawk’’ shapes

The isospectrality of the two standard shapes in the A
configuration has not been proved mathematically so far,
does not seem immediately amenable to the standard fo
of proof. For instance, the transplantation method for
folded domains described by Okada and Shudo@4# does not
work here because a DBC edge, upon folding, would yiel
DBC rather than an NBC external edge as desired. Our
here is to present strong numerical evidence for isopectra
in this new ABC configuration. It can be seen thatA,LD ,LN
and theu’s in Eq. ~1! are the same for both shapes, so t
coefficients of the three terms in Eq.~1! are equal for both, a
necessary condition for isospectrality. In fact, there are
such distinct isospectral pair configurations. We denote
ADNBC ~ANDBC! the situation for which the longest sid
in the alternating boundary condition configuration in ea
shape is chosen to have DBC~NBC!.

Our numerical method now uses sin@(n11/2)au# or
cos@(n11/2)au# in the Fourier-Bessel corner expansion
whichever conforms to the local BC. The computed eig
values for the first 30 modes of the two shapes~bilby and
hawk! in the two ABC configurations are given in Table

FIG. 5. Spectral staircases~vertical lines! and smooth approxi-
mations~dashed curves! for both types of alternating boundary con
ditions for the bilby/hawk pair.
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II ~a! and II~b!. In either case, the results for both shapes
the same configuration agree to at least 12 significant figu
The nodal lines for the tenth modes for the two shapes
both configurations are shown in Fig. 4. Unlike the cases
pure DBC@5,17# or pure NBC@17#, we have been unable t
construct any exact ‘‘analytical’’ modes or to identify pa
ticularly simple nodal patterns in the computed eigenfunct
plots. Thus independent checks as for the pure DBC
NBC cases do not seem to be available here.

The corresponding spectral staircase functions are plo
and compared with the graphs of Eq.~1! in Fig. 5. For basic
side lengthh, A5(7/2)h2, uLN2LDu5A2h, and the corner
angle term has value25/12. Thus, forh52, Eq. ~1! be-
comesNADN(E)51.1141E20.2251AE20.4167, with a plus
sign for the second term inNAND(E). The plots show good
agreement and confirm the minus sign for the third term
these cases of alternating boundary conditions for this pa
shapes.

B. Other isospectral pairs

Inspection of the building scheme as utilized by Even a
Pieranski@8# for constructing isospectral pairs~with DBC!
from a basic building-block triangle shows that in genera
nine-sided shape results; this would not support alterna
boundary conditions. Their special case of an isosceles ri
angled~90-45-45! triangle produces the standard, eight-sid
shapes. The question arises whether the bilby/hawk pair c
stitute the unique ABC configuration isospectral pair,
whether there are other eight-sided shape pairs with the s
property. In the notation of@8#, it can be noted that the
multiple-angle vertex 4g appears just once in the constru
tion circuit, so ifg5p/4 the number of sides is reduced by
from nine to eight. Such even-sided shapes are now a
nable to alternating boundary conditions.

Further inspection of the shapes in Fig. 1 of Ref.@8#
shows that~in their notation! the multiple angles 3a and 3b
each appear twice, so they could not contribute to a cha
of parity of the number of sides. This may nevertheless s
gest the possibility even of six-sided shapes. However, ifa
(or b)5p/3, then for alternating sides the equality of th

FIG. 6. Two new isospectral shapes formed from a nonisosc
building-block triangle~with a565°, b570°, g545°, andc51
in the notation of Ref.@8#!.
2-4



d
he

w
or

o
te
le
t
v
e

, t
th
er
e
.
te
b
d
n

n.

ed
ee-
ob-

and
wo
ura-
on
apes

ng
etic
nd-

.
p-

ifi-
F

6,
e
s in

ISOSPECTRAL SHAPES WITH NEUMANN AND . . . PHYSICAL REVIEW E68, 016702 ~2003!
length differencesLN2LD for the pair of shapes as require
by Eq. ~1! leads to an inconsistency in the geometry of t
fundamental building-block triangle.

Thus ~in the notation of@8#! with g545°, and neither of
a andb equal to 60° or 45°, we get pairs of eight-sided ne
shapes with, for a given pair, the same areas, the same c
angles, and the sameuLN2LDu5a1b2c.0. We have cho-
sen a nonisosceles building-block triangle with anglesa
565°, b570°, g545°, and side lengthc51. These two
new shapes are depicted in Fig. 6. For either ADNBC
ANDBC pairs, the eigenvalues within a pair were compu
using the method described above. Convergence was
rapid than for the bilby/hawk shapes, but we are confiden
the agreement of the first 15 eigenvalues to at least se
significant figures, as shown in Table III. Furthermore, ev
though these regions appear to be nearly mirror images
nodal line patterns shown in Fig. 7 for the 11th modes of
DN, and the ND, cases show significant topological diff
ences. Altogether the numerical evidence of ABC isosp
trality beyond the standard bilby/hawk pair is compelling

While the range of available examples is more restric
than in the pure Dirichlet or Neumann cases, it is remarka
that isospectrality persists with alternating boundary con
tions for regions constructed according to rules that
longer provide a rigorous explanation of the phenomeno

TABLE III. Eigenvalues of the first 15 modes, to seven sign
cant figures, for the two new nonstandard isospectral shapes of
6, with ~a! alternating Dirichlet~longest side!/Neumann boundary
conditions;~b! alternating Neumann~longest side!/Dirichlet bound-
ary conditions.

~a!
M

ADNBC
E

~b!
M

ANDBC
E

1 5.502422 1 2.267531
2 6.449613 2 6.653412
3 11.84158 3 9.217652
4 12.62057 4 9.764155
5 15.17411 5 12.18538
6 18.20655 6 15.17442
7 23.13378 7 19.74201
8 26.76637 8 22.42403
9 30.58768 9 27.25879
10 33.11746 10 28.98984
11 36.24867 11 31.97008
12 37.13131 12 32.36155
13 42.45487 13 36.06495
14 44.50261 14 38.75119
15 47.94645 15 40.87872
01670
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IV. CONCLUSION

The known isospectrality of the two standard shapes~Fig.
1! with Neumann boundary condition has been confirm
numerically to a high degree of accuracy, and good agr
ment with theory for the spectral staircase function was
tained.

We have presented numerical evidence that is the first
indeed strong indication of the isospectrality of these t
standard shapes in the new boundary condition config
tions with alternating Dirichlet and Neumann conditions
successive sides. A pair of nonstandard isospectral sh
~Fig. 6! was similarly dealt with.

It is suggested that some experimental work involvi
fluids may illustrate the NBC case, and that electromagn
cavities might be relevant for the case of alternating bou
ary conditions.

ACKNOWLEDGMENTS

One of us~H.P.W.G.! would like to thank Professor Y
Okada for illuminating e-mail correspondence. T.A.D. is su
ported by NSF Grant No. DMS-0104229.

ig.

FIG. 7. Nodal lines of the 11th modes for the regions of Fig.
in the ADNBC ~top! and ANDBC boundary configurations. Whil
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