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Isospectral shapes with Neumann and alternating boundary conditions
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The isospectrality of a well-known pair of shapes constructed from two arrangements of seven congruent
right isosceles triangles with the Neumann boundary condition is verified numerically to high precision.
Equally strong numerical evidence for isospectrality is presented for the eigenvalues of this standard pair in
new boundary configurations with alternating Dirichlet and Neumann boundary conditions along successive
edges. Good agreement with theory is obtained for the corresponding spectral staircase functions. Strong
numerical evidence is also presented for isospectrality in an example of a different pair of shapes whose basic
building-block triangle is not isosceles. Some possible confirmatory experiments involving fluids are sug-
gested.
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[. INTRODUCTION shaped small “drums”—membranes made from liquid crys-
tal smectic films—and measured their vibrations.

As the most accessible realization of the negative answer In this paper, we investigate numerical aspects of the isos-
to Kac’s[1] question “Can one hear the shape of a drum?,”pectrality of the two standard bilby and hawk shapes, as well
the pair of isospectral shapes discovered by Goetaai.[2] ~ as other shapes, when Neumann boundary conditNBE)
(termed, respectively, “bilby” and “hawk” in Fig. 1 have are present, and make suggestions for possible experimental
subsequently been investigated from a variety of mathematierification.
cal, numerical, and experimental viewpoints. Chaprizih
showed how domain eigenfunctions can be mapped from the II. NEUMANN BOUNDARY CONDITIONS
constituent triangles of one shape to the second to prove o
isospectrality by transplantation, and described a proof by The most commonly encountered boundary condition is
paper-foiding_ More recentiy, Okada and Shliidﬂ)have in- the Dirichlet BC1p=O on the boundary. This Corresponds to
vestigated isospectrality through a technique of successiviée standard “drum” condition for a vibrating membrane
unfolding of fundamental building-block shapes and transWith fixed edges, as well as to the boundary condition for
plantation of eigenfunctions. Wet al. [5] achieved a proof ~quantum billiard9]. The Neumann B@y/dn=0 also has
by an explicit mode-matching method. important manifestationg9], especially in acoustics, where

The numerical probiem Concerning the eigenvaiues Correme pressure satisfies the Helmholtz equation with NBC at a
sponds to solving an eigenvalue problem for the two-figid boundary, and for water surface waves. In electromag-
dimensional Helmholtz equation subject to the Dirichletnetism also, the magnetic field of the transverse ele€Ti)
boundary conditioDBC). Wu et al.[5] verified isospectral- mode in a cavity has NBC. The NBC corresponds to the
|ty numerica”y by an extrapo|ated mode_matching methodyibrational modes of a drum with stress-free edges, as dis-
apparently to about eight significant figures, tabulated for th&€ussed by Hobikeet al. [10], who numerically investigated
first 25 modes. The “analytical” 9th and 21st modes there Such a situation for fractal boundary shapes. Ratss. [11]
corresponding to known simple modes of the underlying tri-2/so considered fractal resonators with NBC numerically, re-
angles, were not computed but were taken at their exact vamarking that this situation could represent transverse acous-
ues. Subsequently, Driscdb], using a much more accurate tical phonons of a two-dimension&D) irregular crystallite.
modified domain-decomposition method, verified isospecin the field of quantum billiards, Gremaud and J4i?]
tra“ty numerica”y to 12 Significant figures for the first 25 considered rational and irrational rhombus billiards with
modes, including the two “analytical” modes for which the NBC. Kohler and Blume[13] considered ray-splitting bil-
computation was more or less exact. This work showed thdtards including NBC. Wiersig14] has used the fact that, for
the computed results in Reff5] were actually accurate to
about four to five significant figures.

On the experimental side, Sridhar and Kudr¢#i per-
formed measurements on thin microwave cavities of the ap-
propriate shapes, utilizing the correspondence with a two-
dimensional Helmholtz equation in the electromagnetic

formulation. Then Even and PierangBi] constructed actual >
*Email address: driscoll@math.udel.edu FIG. 1. The two standard isospectral shapes, termed, respec-
TEmail address: H.Gottlieb@griffith.edu.au tively, “bilby” and “hawk.”
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TABLE I. Eigenvalues of the first 30 nonzero modes, to 12 30 - v -
significant figures, for the two standard isospectral shapes of Fig. 1 P
(basic side two unijs with Neumann boundary conditiotMode 257 L T (l
numberM=M'+1.) 20t 1 I
, , W 45}
M E M E > 15 e
1 0.211150088843 16 9.87841180931 101
2 0.809165742343 17 10.3253541128 5t
3 1.05781354844 18 11.5754753532 ![f H )
4 1.86039671198 19 11.6665580661 Oo 5 ] 10 15 20
5 2.46740110027 20 12.3370055014 E
6 2.72788980382 21 12.9096372668
7 3.39124050892 22 13.7742157078 FIG. 3. Spectral staircase for the bilby/hawk shapes with Neu-
8 4.40632478595 23 15.4610825657 ~Mann BC.
9 4.93480220054 24 15.9519127351  modes of the two isospectral shapes. From the nodal patterns
10 5.66570714255 25 16.2660218054  of these analytical expressions and numerical solutions for
1 5.81846754996 26 16.9514271289  |ow modes, they were able to identify the first five analytical
12 6.98274727028 27 19.0892095926 Neumann modes as the 5th, 9th, 15th, 20th, and 29th non-
13 7.64059043694 28 19.1962817413 trivial sequential modes. The finite element computations
14 9.04934361203 29 19.7392088022 Mmentioned there, while sufficient for identifying patterns,
15 9.86960440109 30 20.5304462804 Only verified isospectrality to about three significant figures.

The exact modes mentioned above, however, serve as bench-
marks in any investigation of NBC isospectrality for these

barrier billiards, the NBC pertains on part of the boundary ofshapes. . I . .
a symmetry-reduced polygon for the even states of the full A numerical verification of isospectrality of the two stan-

shape. Neumann boundary conditions are therefore impon-.ard shapes of Fig. 1 for NBC, such as has been done pre-

. . viously for DBC [5,6], does not seem to have been carried
gior:’s &\‘/\:ﬁ tnr:;\/ptr)zb;%rgrg;ése%spectral shapes with these Cor]dé)u'[ before. For this paper, the earlier work of Dris¢6él] has

The spectra under consideration in this section are thbeen adapted to the NBC case| ), a candidate eigenfunc-

: : . . flon near a corner with interior angle/a is expanded in
eigenvalues obtained from the two-dimensional HelmholtqOCaI polar coordinates asM . c,J (r\/E)sin(naa) Then
n=1¥nYna .

" one finds an eigenvalué by matching different expansions

) ; r3‘;1Iong the interfaces of a domain decomposition; numerically,
dimensions greater than or equal to 4, Urakadl already  hig hecomes a minimization of the result of a matrix eigen-
showed isospectrality for Dirichlet and for Neumann bound- 5 ;e problem. For NBC we replace the sine by a cosine and
ary conditions. In their announcement of DBC isospectragtart the summation at=0.

two-dimensional domains, Gordat al.[16] also stated that

the same shapes with NBC were isospectral; Okada ang,

Shudo [4] noted that their procedures, suitably modified

We have verified isospectrality in the NBC configuration
the first 30(nonzerg modes to 12 significant figures. The
'results for both shapes are given in Table I. With fundamen-

prove isospectrality for NBC. Chapma@] proved iSOSpec- 5| jangth unit 2, the analytical modes described above have
trality for the bilby/hawk and other pairs having the NBC. eigenvalues given by E, = (72/4)(m?+n?); m=n
m,n ’ =

Gottlieb and McManu$17] produced explicit eigenfunc- ~0,1,2.... Thecases n,n)=(0,1), (1,1, (0,2, (1,2

tions and corresponding exact eigenvalues for some NB(EZ,Z) corresponding to the five analytical modes described

above, together with their readily identifiable nodal patterns
[17], are essentially recovered exactly. The nodal patterns of
the fourth nontrivial mode(which is nonanalytical are
shown in Fig. 2.

It may be noted that many of the investigations concerned
with quantum chaotic spectral statistif®] deal with very
large numbers of very high levels. The accuracy on these
typically was 102 of the mean level spacing for earlier
works, and more recently of the order of 10 By contrast,
we are concerned here with the first few dozen eigenvalues,
computed to very high accuracy, of the order of bof the
mean level spacing or better.

The spectral staircasénumber-counting function for
these systems N(E)=%,_1....0(E—E;), where® is the

FIG. 2. Nodal lines for the fourth nontrivial Neumann BC Heaviside unit step function. This is related to the spectral or
modes. trace function ®(t)=3,-1....exp(—E;t) via a Laplace
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TABLE Il. Eigenvalues of the first 30 modes, to 12 significant
figures, for the two standard isospectral shapes of Fipasic side
two unitg, with (a) alternating Dirichlet(longest sidgNeumann
boundary conditions;(b) alternating Neumann(longest sidg
Dirichlet boundary conditions.

@ ADNBC (b) ANDBC

M E M E

1 1.65141342709 1 0.715984505106

2 1.90967315909 2 1.97361411622

3 3.43870897236 3 2.77451509187

4 4.17587478260 4 2.97462791606

5 4.57209973453 5 3.88908349386

6 5.62166889695 6 4.63290823432

7 6.89161511324 7 6.02493079100

8 7.74834106067 8 6.93817184169

9 9.33008358225 9 7.77235813608

10 9.80192274409 10 8.44522884854

11 10.6260535933 11 9.39178897887

12 11.5038125374 12 10.4460416956

13 12.2664713847 13 10.9709402924

14 12.8896196853 14 11.5756538487

15 14.2405332523 15 12.8545214783

16 15.5313799266 16 13.5117617705

17 16.3655578572 17 15.0069728862

18 17.3956907586 18 15.2660433735

19 17.8925543463 19 15.9460361465

20 19.2138859210 20 17.0144500638 FIG. 4. qual Iir_1es for the tenth modes in the ADNB@Gp) and

21 19.7290650856 21 17.8080832556  ANDBC configurations.

22 20.3158331403 22 19.6769099441

23 21.6332697571 23 20.2581964864  reads, for the NBC caseNy(E)=1.114E+1.6302E

24 22.2827868664 24 20.5724674001  +0.4167. In Fig. 3, we ploN(E) for the first 31 modes for
25 23.7501148857 25 21.8462979588  NBC (including the zero mode The agreement with this
26 24.2385971539 26 22.6047777014  graph is good, demonstrating the need for inclusion of the
27 25.6971017156 27 23.5733311802  zero mode and the plus sign for the second term in the case
28 26.2466652675 28 24.1261381785  of NBC compared with the minus sign for the DBC case, as
29 27.5323151203 29 24.6538070142  was plotted in6].

30 28.0086952587 30 25.7410633370 To our knowledge, no experiments involving isospectral

shapes with Neumann boundary conditions have been per-
formed, in contrast to reported experiments for the DBC case
[7,8]. Some such NBC experiments could be envisaged,
however, based on acoustics and wave propagation in liquids
[9, Sec. 2.1, where NBC's are involved. For instance,
Blumel et al. [23] reported on the nodal patterns of surface

transform. Based on the work of several authid8—21],
with earlier work discussed extensively in Baltes and Hilf
[22], the (smoothed spectral staircase functidisorrespond-
ing to the trace function appearing i7]) for polygons is

given by waves formed by agitating a tank with circular or stadium-
A (Ly—Lp) shaped cylindrical walls. Chinnergt al. [24,25 used a
N(E)~(47T)E+ ) E(X2 schlieren technique to visualize resonances in sonified water
cavities with stadium and circular cross sections. Hebert
(72— 6?) et al. [26] made an experimental study of resonances of a
+(= DD,NN—ZDN,ND)Wa (1) fractal acoustic cavity.

It seems likely that these experimental techniques could
whereA is the areal (Ly) is the length of that part of the be applied to cross-sectional shapes as in Fig. 1 to investigate
perimeter having DirichletNeumann boundary condition, their isopectrality. Independent checks on the accuracy of
and the sums are over corner anglesubtended by pairs of such experiments would be available through the sequential
sides with boundary conditions as indicated. For basic unimode numbers, eigenvalue ratios, and nodal patterns of the
length 2 for the two isospectral shapes of Figwhich have analytical modes pictured ifL7], along with the results in
the same area, perimeter lengths, and corner angleis  Table | and plots of Fig. 2 in the present work.
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FIG. 5. Spectral staircasésertical lines and smooth approxi- FIG. 6. Two new isospectral shapes formed from a nonisosceles
mations(dashed curvedor both types of alternating boundary con- building-block triangle(with a=65°, 8=70°, y=45°, andc=1
ditions for the bilby/hawk pair. in the notation of Ref[g]). ' ' '

I1l. ALTERNATING BOUNDARY CONDITIONS ) _
II(@ and li(b). In either case, the results for both shapes in

_There has been some work done on 2D systems with ge same configuration agree to at least 12 significant figures.
mixture of Dirichlet and Neumann BC's on different parts of the nodal lines for the tenth modes for the two shapes in
the boundary. Baltes and Hil22, p. 47 show the appear- oy configurations are shown in Fig. 4. Unlike the cases of

ance of a minus sign in the thir(:tonstan.t, corner-angle ure DBCJ[5,17] or pure NBC[17], we have been unable to
term of the spectral number counting function for a rectang| onstruct any exact “analytical” modes or to identify par-

whose sides successwe_ly alternate DBC and NBC Eq. ticularly simple nodal patterns in the computed eigenfunction
(1) above. In quantum billiards, there has been recent work lots. Thus independent checks as for the pure DBC. and
where parts of a rectangular boundary have DBC and par ' P . P

BC cases do not seem to be available here.

have NBC, for ray-splitting13] and barrier[14] billiards. di [ stai f ] lotted
Thus it is important and timely to consider systems with both 1 € corresponding spectral staircase functions are plotte
and compared with the graphs of E@) in Fig. 5. For basic

types of boundary conditions in detail. X 5

Having verified, above, the accuracy of our modifiedSide lengthh, A=(7/2)h%, [Ly—Lp|=2h, and the corner
domain-decomposition method for computationally handling2ngle term has value-5/12. Thus, forh=2, Eqg. (1) be-
Dirichlet or Neumann BC's in the case of the two standardcomesNpn(E) =1.114E—0.2251E~0.4167, with a plus
provably isospectral shapes, we turn to the case of shapé&tgn for the second term iN,yp(E). The plots show good
with “alternating boundary conditions{ABC’s) in which  agreement and confirm the minus sign for the third term in
each side is successively DBC or NBC as one moves arourttiese cases of alternating boundary conditions for this pair of
the perimeter. shapes.

A. Standard “bilby” and “hawk” shapes B. Other isospectral pairs

The isospectrality of the two standard shapes in the ABC
configuration has not been proved mathematically so far, and Inspection of the building scheme as utilized by Even and
does not seem immediately amenable to the standard fornReranski[8] for constructing isospectral paifsvith DBC)
of proof. For instance, the transplantation method for unfrom a basic building-block triangle shows that in general a
folded domains described by Okada and Shisladoes not nine-sided shape results; this would not support alternating
work here because a DBC edge, upon folding, would yield @éoundary conditions. Their special case of an isosceles right-
DBC rather than an NBC external edge as desired. Our airangled(90-45-45 triangle produces the standard, eight-sided
here is to present strong numerical evidence for isopectralitghapes. The question arises whether the bilby/hawk pair con-
in this new ABC configuration. It can be seen tihat. 5,Ly  stitute the unique ABC configuration isospectral pair, or
and thed's in Eq. (1) are the same for both shapes, so thewhether there are other eight-sided shape pairs with the same
coefficients of the three terms in E(.) are equal for both, a property. In the notation of8], it can be noted that the
necessary condition for isospectrality. In fact, there are twamultiple-angle vertex 4 appears just once in the construc-
such distinct isospectral pair configurations. We denote byion circuit, so if y= 7/4 the number of sides is reduced by 1
ADNBC (ANDBC) the situation for which the longest side from nine to eight. Such even-sided shapes are now ame-
in the alternating boundary condition configuration in eachnable to alternating boundary conditions.
shape is chosen to have DBRBC). Further inspection of the shapes in Fig. 1 of Ri]

Our numerical method now uses [g§im+1/2)af] or  shows thaf(in their notation the multiple angles @ and 3
cog(n+1/2)a#] in the Fourier-Bessel corner expansions,each appear twice, so they could not contribute to a change
whichever conforms to the local BC. The computed eigen-of parity of the number of sides. This may nevertheless sug-
values for the first 30 modes of the two shagbsby and  gest the possibility even of six-sided shapes. Howevey if,
hawk in the two ABC configurations are given in Tables (or 8)=#/3, then for alternating sides the equality of the
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TABLE llI. Eigenvalues of the first 15 modes, to seven signifi-
cant figures, for the two new nonstandard isospectral shapes of Fig.
6, with (a) alternating Dirichlet(longest sidgNeumann boundary
conditions;(b) alternating Neumanfiongest sidgDirichlet bound-
ary conditions.

(@ ADNBC (b) ANDBC

M E M E

1 5.502422 1 2.267531

2 6.449613 2 6.653412

3 11.84158 3 9.217652

4 12.62057 4 9.764155

5 15.17411 5 12.18538

6 18.20655 6 15.17442

7 23.13378 7 19.74201

8 26.76637 8 22.42403

9 30.58768 9 27.25879

10 33.11746 10 28.98984

11 36.24867 11 31.97008

12 37.13131 12 32.36155

13 42.45487 13 36.06495

14 44.50261 14 38.75119 >

15 47.94645 15 40.87872

length differences . — L for the pair of shapes as required FIG. 7. Nodal lines of the 11th modes for the regions of Fig. 6,
9 N =D P P q in the ADNBC (top) and ANDBC boundary configurations. While

by Eq. (1) leads to an inconsistency in the geometry of thethe two regions are nearly mirror images, their mode patterns in

fundamental building-block triangle. _ both these instances are quite different.
Thus (in the notation of 8]) with y=45°, and neither of

« andB equal to 60° or 45°, we get pairs of eight-sided new IV. CONCLUSION

shapes with, for a given pair, the same areas, the same cornerrne known isospectrality of the two standard sha(ég.
angles, and the sanjey—Lp|=a+b—c>0. We have cho- 1) with Neumann boundary condition has been confirmed
sen a nonisosceles building-block triangle with angies npumerically to a high degree of accuracy, and good agree-
=65°, =70°, y=45°, and side lengtlt=1. These two ment with theory for the spectral staircase function was ob-
new shapes are depicted in Fig. 6. For either ADNBC oftained.
ANDBC pairs, the eigenvalues within a pair were computed We have presented numerical evidence that is the first and
using the method described above. Convergence was legsleed strong indication of the isospectrality of these two
rapid than for the bilby/hawk shapes, but we are confident irstandard shapes in the new boundary condition configura-
the agreement of the first 15 eigenvalues to at least sevdipns with alternating Dirichlet and Neumann conditions on
significant figures, as shown in Table Ill. Furthermore, eversuccessive sides. A pair of nonstandard isospectral shapes
though these regions appear to be nearly mirror images, tH&ig. 6) was similarly dealt with.
nodal line patterns shown in Fig. 7 for the 11th modes of the It is suggested that some experimental work involving
DN, and the ND, cases show significant topological diﬁer_fluiq§ may_illustrate the NBC case, and that eIectromagnetic
ences. Altogether the numerical evidence of ABC isospecCaV't'es r_n_lght be relevant for the case of alternating bound-
trality beyond the standard bilby/hawk pair is compelling. &Y conditions.
While the range of available examples is more restricted
than in the pure Dirichlet or Neumann cases, it is remarkable
that isospectrality persists with alternating boundary condi- One of us(H.P.W.G) would like to thank Professor Y.
tions for regions constructed according to rules that naOkada for illuminating e-mail correspondence. T.A.D. is sup-
longer provide a rigorous explanation of the phenomenon. ported by NSF Grant No. DMS-0104229.
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